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Abstract 

To test for equality of variances in independent random samples from multiple 
univariate normal populations, the test of first choice would usually be the likelihood 
ratio test, the Bartlett test. This test is known to be powerful when normality can be 
assumed. 

Here two Wald tests of equality of variances are derived. The first test 
compares every variance with every other variance and was announced in Mather and 
Rayner (2002), but no proof was given there. The second test is derived from a quite 
different model using orthogonal contrasts, but is identical to the first. This second 
test statistic is similar to one given in Rippon and Rayner (2010), for which no 
empirical assessment has been given. These tests are compared with the Bartlett test 
in size and power.  

The Bartlett test is known to be non-robust to the normality assumption, as is 
the orthogonal contrasts test. To deal with this difficulty an analogue of the new test is 
given. An indicative empirical assessment shows that it is more robust that the Bartlett 
test and competitive with the Levene test in its robustness to fat-tailed distributions. 
Moreover it is a Wald test and has good power properties in large samples. Advice is 
given on how to implement the new test. 
 
Key Words: Bartlett’s test; Levene test; Orthogonal and non-orthogonal contrasts; 
Wald tests. 
_____________________________________________________________________ 
 
1. Introduction 
 

Suppose we have m independent random samples, with the jth being of size nj 
and being from a normal N(µj, 2

jσ ) population, for j = 1, …, m. The total sample size 

is n = n1 + … + nm. We seek to test equality of variances: H: 2
1σ  = … = 2

mσ  = σ2, say, 
against the alternative K: not H. Probably the most popular choices for testing H 
against K are the parametric Bartlett test, which is known to be not robust to 
departures from normality, and the nonparametric Levene test, which is known to be 
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robust but is less powerful than Bartlett’s test when the data are approximately 
normal. 

In the case of just two independent random samples the likelihood ratio test is 
equivalent to the F test based on the quotient of the (unbiased) sample variances. 
Using the Wald test, Rayner (1997) derived a test based on the difference of the 
sample variances. This test, and a robust analogue of it, were discussed in Allingham 
and Rayner (2011). 

For the m-sample problem Mather and Rayner (2002) gave, without proof, a 
new test statistic. Here a relatively succinct derivation is given. Using the same 
approach a new competitor test, based on orthogonal contrasts, is derived. It is not 
immediately obvious, but the two tests are identical. 

In a small empirical study we show that for the configurations chosen here the 
orthogonal contrasts test is slightly inferior to, but certainly competitive with, the 
Bartlett test in both size and power. This is consistent with the fact that likelihood 
ratio and Wald tests are asymptotically equivalent. 

In the case m = 2, Allingham and Rayner (2011) showed that the test derived 
here is, like the Bartlett test, sensitive to departures from normality. However it is 
possible to give an analogue of the test that is robust to non-normality. We argue that 
this test is a Wald test and hence has good power in large samples. A similar analogue 
of the Bartlett test is not apparent. 

For convenience the Bartlett test statistic B is given here. Define  
 

B = 
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in which 2

jS  is the unbiased sample variance from the jth sample, j = 1, …, m and S2 = 

( ) ( )∑ −−
j jj mnSn /1 2  is the pooled sample variance. The test statistic B has 

asymptotic distribution 2
1−mχ . Common practice when normality is in doubt is to use 

Levene’s test. This is based on the ANOVA F test applied to the sample residuals. 
There are different versions of Levene’s test using different definitions of residual. 
The version employed here uses the group means, .iij XX − , in an obvious notation. 

The distribution of the test statistic, L, say, is approximately mnnm m
F −++− ...,1 1

. 
In Sections 2 and 3 derivations of the Mather and Rayner (2002) and the 

orthogonal contrasts tests are given. A brief empirical assessment of these tests is 
given in Section 4. A robust analogue of the orthogonal contrasts test is given in 
Section 5. An example is given in Section 6, while section 7 gives by a brief 
conclusion, including advice on how to implement the recommended robust test. 
 
 
2. The Mather-Rayner m-Sample Test 
 

To test H against the alternative K first define an (m – 1) × m contrast matrix 
C. Essentially, the rows of C are used to define contrasts between the population 
variances 2

jσ . These contrasts must be specified before sighting the data. If we define 



 3 

φ = ( 2
1σ , …, 2

mσ )T, then the null hypothesis of equality of variances is equivalent to θ 
= Cφ = 0. In this section we take (C)ii = 1 and (C)i(i+1) = – 1, i = 1, … , m – 1, with all 
other elements zero. The contrasts are between successive variances: 2

1σ  – 2
2σ , 2

2σ  – 
2
3σ , …, 2

1−mσ  – 2
mσ . Clearly there are many other possible choices of contrast matrix.  

If, as above, 2
jS  is the unbiased sample variance from the jth sample, then put 

φ̂  = ( 2
jS ) and θ̂  = C φ̂ . A Wald test of H against K may be based on θθθ ˆ )ˆ(vôcˆ 1−T . 

Using the Rao-Blackwell theorem as in Rayner (1997), the covariance matrix of φ̂ , 
cov( φ̂ ) = diag(2 4

jσ /(nj – 1)), may be optimally estimated by D = diag(dj), where dj = 

2 4
jS /(nj + 1) for j = 1, … , m. Hence the covariance matrix of θ̂  may be optimally 

estimated by C diag(dj) CT, which for this choice of C is 
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Note that only variances and adjacent elements of θ̂  have non-zero covariance. 

Mather and Rayner (2002) gave the test statistic in terms of contrasts between 
all the sample variances: 
 

TMR = 
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They noted that the derivation required the inversion of the tri-diagonal matrix, and in 
fact the inverse was calculated for some small values of m, an inverse guessed and the 
result proven by a lengthy induction. For the two-sample problem a simple calculation 
shows that θ̂  = 2

2
2

1 SS −  and var(θ̂ ) = d1 + d2, agreeing with the result in Rayner 
(1997). A relatively succinct derivation of TMR is given in the Appendix.  
 
 
3 A Wald Test Using Orthogonal Contrasts 
 

The complexity of the derivation of the Wald test can be reduced by requiring 
that the rows of C be orthogonal. First, define C* = (CT|u)T to be an m × m orthogonal 
matrix. Should the null hypothesis be true, the common variance could be estimated 
by the pooled sample variance, S2 = ∑ −−

j jj mnSn )/()1( 2 . Put wj = (nj – 1)/(n – m) 

for j = 1, … , m and note that ∑ j jw  = 1, since ∑ −
j jn )1(  = n – m. Now, define σ2 

= ∑ j jjw 2σ , φ = ( 2
jσ √wj), u = (√wj) and C = Im – uuT. Note that C is symmetric, 

idempotent, orthogonal and not of full rank. Its only specification so far, and 
ultimately, is that its rows are orthogonal to u.  
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Put θ = Cφ = (( 2
jσ  – σ2)√wj), which is zero if and only if 2

jσ  = σ2 for all j. 
Hence we again wish to test H: θ = 0 against K: θ ≠ 0, albeit for a slightly different θ 
than in the previous section. Here, θ̂  = (( 2

jS  – S2)√wj) is an unbiased estimator of θ, 
and is asymptotically equivalent to the maximum likelihood estimator of θ. The 
covariance matrix of θ̂  is estimated by )ˆv(ôc θ  = CDC, where now D = diag(dj wj) 
with the dj as in the previous section. To find the inverse of )ˆv(ôc θ  a routine lemma is 
needed. The proof is omitted.  

 

Lemma 3.1. If 
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 and if E, F, G, H are known with H 

invertible, then A–1 = E – FH–1G. 
 

The lemma is applied with A = )ˆv(ôc θ  and 
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so that A–1 = CD–1CT – (CD–1 u) (uTD–1CT)/(uTD–1u).  

A Wald test of H: θ = 0 against K: θ ≠ 0 can be based on TOC = θθθ ˆ )ˆ(vôcˆ 1−T . 
Since φ = ( 2

jσ √wj), φ̂  = ( 2
jS √wj). Substituting gives 

 
TOC = Tφ̂ CT (CD–1CT) Cφ̂  – (uTD–1CTCφ̂ )2/(uTD–1u). 

 
Now, since C* is orthogonal, 
 

Im = C*T C* = ( ) 







T

T

u
C

uC   = CTC + u u T, 

 
giving CTC = Im – uuT. With u = (√w1, …, √wm)T it follows that uTφ̂  = ∑ j jjSw 2  = S2 

and (Im – uuT) φ̂  = ( )( 22 SSw jj − ) = Cφ̂ , say. Thus  
 

TOC = Tφ̂ (I – uuT)D–1(Im – uuT)φ̂  – {uTD–1(Im – uuT) φ̂ }2/(uTD–1u) = 
 = T

Cφ̂  D–1 Cφ̂  – (uTD–1
Cφ̂ )2/(uTD–1u) 
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in which λj = 1/dj for j = 1, ..., m.  It is not immediately obvious, but TOC and TMR are 
identical. We do not show that here. 

In Rippon and Rayner (2010) orthogonal contrasts and the Moore-Penrose 
inverse were used to derive a Wald test based on 
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Clearly TMP is just TOC without the final ‘correction term’ that can be expected to be 
small when the null hypothesis is true. 

Note that under the null hypothesis of equality of variances, the test statistics 
TMR, TMP and TOC all have asymptotic distribution 2

1−mχ . Moreover, these three test 
statistics are invariant under transformations Yjk = a(Xjk – bj), for constants a, bj, for j 
= 1, ..., m. 

 
 

4 Empirical Assessment 
 
Throughout this assessment we take samples of the same size, N, in each of the 

m populations. Thus, the total sample size, n, is given by n = mN. 
The test sizes of the competing tests were compared for a number of 

combinations of the parameters involved. Figure 1 shows the proportion of rejections 
in 100,000 Monte Carlo simulations for nominal 5% level tests for varying sample 
sizes N, each population being normal with mean 0 and variance 1. The left panel 
compares m = 4 populations, the right panel m = 8 populations, for the tests based on 
B, TOC and TMP. The test based on TMP is clearly not competitive. The form of B used 
here (given in Section 1) has been adjusted from the likelihood ratio test statistic to 
improve its type 1 error rate, and that is reflected in its excellent adherence to the 
nominal level in Figure 1. Interestingly the test based on TOC performs far worse for m 
= 8 than it does for m = 4. 
 
 

 
Figure 1. Test sizes for tests based on B, TOC and TMP for nominal 5% level tests for 
varying sample sizes N from normal populations with means 0 and variances 1. The 
left panel compares m = 4 populations and the right m = 8 populations. 
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The powers of the tests based on B and TOC are compared in Figure 2. Critical 
values have been estimated so that all are 5% level tests. The test based on TMP was 
excluded because, as noted above, in terms of the agreement between the achieved 
and nominal levels, it is not competitive. Each point is the proportion of rejections in 
100,000 sets of data, with samples sizes of N = 10, 20 and 50 for each of m = 4 
populations from the normal distributions with means 0 and population variances 1, 1 
+ ∆σ2, 1 + 2 ∆σ2, 1 + 3 ∆σ2, where ∆σ2 varies between 0 and 1 in steps of 0.001. 
Thus, at the LHS of the plot, the variances are equal and at the RHS they are 1, 2, 3 
and 4.  
 
 

 
Figure 2. Power functions for the Bartlett test (thin line) and the test based on TOC 
(thick line), based on four normal populations, a significance level of 5% and sample 
sizes from each population of N = 10, 20, 30 and 50. 
 
 

As N increases, the powers of the two tests approach each other. This is as 
expected since both are asymptotically optimal tests. The parameter space is clearly 
multidimensional, and here we have chosen a very particular subset. In this space, for 
smaller sample sizes, the power of the Bartlett test is slightly superior to the test based 
on TOC. However, across the entire sample space it could be expected that they will 
perform similarly, with sometimes one, and sometimes the other, being slightly 
superior. 
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5. A Robust Form of the Orthogonal Contrasts Test  
 

In the discussion so far we have introduced tests based on TMR, TOC and TMP. 
The test based on the Moore-Penrose test statistic, TMP, has poor adherence to its 
nominal test size, and the test statistics TMR and TOC are, in fact, identical. The use of 
the test based on TOC may be compromised if, like the Bartlett test, it is not robust to 
departures from the normality assumption. In fact, as was shown in Allingham and 
Rayner (2011) for the case m = 2 and as we shall see in Figure 3 for m = 4 and m = 8, 
the agreement between nominal and actual test sizes for the test based on TOC is not 
good enough for practical use when sampling from a fat-tailed distribution. 

We therefore propose an analogue of TOC. In deriving that test, the variances 
var( 2

jS ) were estimated optimally using the Rao-Blackwell theorem. The estimation 
depends very strongly on the assumption of normality. If normality is in doubt then 
var( 2

jS ) can be estimated using results given, for example, in Stuart and Ord (1994). 
For a random sample Y1, ..., Yn with population and sample central moments µr and mr 
= ∑ =

−
n

j
r

j nYY
1

/)( , r = 2, 3, ... respectively, Stuart and Ord (1994) gave 

 
E[mr] = µr + O(n–1) and var(m2) = (µ4 – 2

2µ )/n + O(n–2). 
 
Applying Stuart and Ord (1994, 10.5), 2

2µ  may be estimated to O(n–1) by 2
2m , or, 

equivalently, by n 2
2m /(n – 1) = S4, where S2 is the unbiased sample variance. It 

follows that, to order O(n–2), var(m2) may be estimated by (m4 – 2
2m )/n. Therefore 

instead of estimating var( 2
jS ) by )1/(2 4 +jj nS , we propose using (mj4 – 4

jS )/nj. Thus, 
in the formula for TOC given in (3.1), replace λj = (nj + 1)/(2 4

jS ) by λj = nj/(mj4 – 4
jS ). 

This test statistic will be denoted by TAR. 
A preliminary study found that agreement of the nominal and actual test size 

for TOC was not good enough for practical use (see Figure 3).  The Bartlett test 
statistic, however, has been adjusted to improve this agreement, and so a comparison 
between B, TOC and TAR does not compare like with like. There are various options for 
such an improvement, and here we have opted to adjust the 5% critical points. Under 
the assumption of normality and under the null hypothesis of equality of variances, we 
estimated the 5% critical points for N between 10 and 50, inclusive, using 100,000 
simulations of each sample size for m = 4 and m = 8 populations. Using standard 
curve fitting techniques, we found that these were well approximated over that range 
by 

 
c(4, N, 0.05) = 2

05.0;3χ  (–0.714 – 28.082N–0.5 – 141.396N–1 + 280.374N–1.5) for m = 4 and 
c(8, N, 0.05) = 2

05.0;7χ  (–1.634 – 42.679N–0.5 – 213.485N–1 + 415.522N–1.5) for m = 8. 
 
Using these critical values for m = 4 and m = 8 and for 10 < N < 50 the actual test 
sizes vary between 0.046 and 0.054.  

Use of the asymptotic 5% values 2
05.0;1−mχ  required very large sample sizes, 

depending on m and the nominal level α. Their use cannot be recommended. 
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Figure 3. Test sizes for the tests based on L (solid line and dots), TOC (+ and dots), TAR 
using critical values estimated under normality (triangles) and TAR using four term 
Bartlett correction (squares). For a significance level of 5% we compare four 
populations (panels (a), (b) and (c)) and eight populations (panels (d), (e) and (f)), and 
sample sizes of N = 10 (panels (a) and (d)), 30 (panels (b) and (e)), and 50 (panels (c) 
and (f)). 

 
 
For N > 50, or for levels other than 5%, or for unequal sample sizes, critical 

values can be estimated using the MATLAB or R code available at the URL given in 
the conclusion. 

To assess the effect of non-normality, instead of sampling from the standard 
normal distribution, we sampled from tν distributions with varying degrees of 
freedom, ν. If ν is large, the distribution sampled will be close enough to normal that 
we could expect the proportion of rejections to be close to the nominal. The critical 
values used in this assessment are both c(m, N, 0.05) and the estimated ‘exact’ critical 
points. 
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In Figure 3 we plot the proportion of rejections - actual test size - for the tests 
based on L, TOC and, with both critical values, TAR. Sampling is from tν distributions 
for ν = 1, ..., 30. We show curves for each test with common sample sizes N = 10, 30 
and 50. 

It is apparent that the test based on TOC performs increasingly poorly as the 
degrees of freedom reduce and the tails of the distribution become fatter. Although 
not shown in the figure, this parallels the results for the Bartlett test. 

The Levene test generally has exact level closer to the nominal level than the 
tests based on TAR except for small degrees of freedom. However the level of the test 
based on TAR is almost always reasonable, and while for very small ν the level is not 
as close to the exact level as perhaps we may prefer, the same is the case for the 
Levene test.  

In general, a Wald test of H: θ = 0 against K: θ ≠ 0 is based on a quadratic 
form , in which θ̂  is asymptotically equivalent to the maximum likelihood 
estimator of θ and Σ̂  is the asymptotic covariance matrix of θ̂ . Thus, the tests based 
on TOC and TAR are both Wald tests and will have the weak optimality these tests 
enjoy. In particular they are asymptotically equivalent to the likelihood ratio test, and 
thus will have power approaching the power of the Bartlett test in large samples. As 
the tests based on TAR, using either c(m, N, 0.05) or estimated ‘exact’ critical values, 
have actual test sizes close to the nominal 5% test size, are asymptotically optimal and 
are robust (at least to fat-tailed distributions), they can be recommended. 
 
 
6 Example: National Institute of Standards and Technology Data 

 
We analysed data from the National Institute of Standards and Technology, 

involving ten groups of ten observations (NIST/SEMATECH, 2006). The collection 
of all unadjusted observations is not consistent with normality (Shapiro-Wilk p-value 
less than 1%) but if the group means are subtracted from each observation the 
collection of all centred observations is consistent with normality (Shapiro-Wilk p-
value 0.35). We conclude the data are consistent with the assumption that they are 
N(µj, 2

jσ ) distributed. 
Without loss of generality all observations are multiplied by 1000, giving the 

following standard deviations for the ten groups: 
 
4.3461, 5.2164, 3.9777, 3.8528, 7.5785, 9.8860, 7.8775, 3.6271, 4.1379 and 5.3292. 

 
We find that B and TAR take the values of 20.786 and 26.535, respectively, with 
corresponding Monte Carlo p-values, based on 100,000 simulations, of 0.013 and 
0.445. The 2

9χ  p-value for B is 0.014, consistent with the Monte Carlo p-value. The 
sample sizes N are too small to use the asymptotic distribution to obtain a p-value for 
TAR. 

From the Bartlett test it appears that there is evidence, at the 5% level, that the 
variances are not consistent. The Bartlett test is much more critical of the null 
hypothesis than the test based on TAR. This is consistent with the powers shown in 
Figure 2, where for small sample sizes the Bartlett test appears to be more powerful.  

We doubled and trebled N by duplicating the data within each population and 
found that the TAR test was then equally critical of the data. 
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If the data are not consistent with normality then the Bartlett test cannot be 
used. However, the test based on TAR is valid and can be implemented by finding a 
Monte Carlo p-value. This merely involves generating sets of standard normal values 
for samples of size n1, ..., nm and calculating TAR for each data set. The proportion of 
exceedances of the observed TAR value is the Monte Carlo p-value. MATLAB code to 
implement this procedure is available at the web site given in the conclusion. 
 
 
7 Conclusion 

 
We have given a compact derivation for the test based on TMR, introduced in 

Mather and Rayner (2002). A new test, based on TOC, is also derived. In fact TMR and 
TOC are identical. A test due to Rippon and Rayner (2010), based on TMP, is TOC minus 
a ‘correction factor’. The test based on TMP approaches its asymptotic distribution 
quite slowly. Thus unless resampling methods are used to calculate p-values, the TOC 
test is to be preferred to TMP. 

Although the test new test based on TOC cannot be claimed to be superior to 
that based on B in terms of size and power, it is competitive. The Bartlett test adheres 
to its nominal significance level more closely, no doubt in part because the test 
statistic has been adjusted; were the new test to be so adjusted it is very probable that 
both tests will perform similarly. For larger sample sizes the powers are similar. 

A robustness study shows that when sampling is from fat-tailed t distributions 
instead of the normal, the tests based on B and TOC do not have actual test size close to 
nominal. However tests based on L and TAR are acceptable in this regard. As the test 
based on TAR is a Wald test it can be expected to have good power in large samples.  

Even when not sampling from normal distributions, test statistics of the same 
form as TAR, quadratic forms with vector asymptotically equivalent to the maximum 
likelihood estimator of the parameter of interest and matrix the asymptotic covariance 
matrix of θ̂ , are Wald tests and can be expected to have excellent properties in large 
samples. 

To apply the test based on TAR three options are available. For m = 4 and m = 
8, α = 5% and equal sample sizes N between 10 and 50 from each population, the 
Bartlett approximate critical values c(m, N, 0.05) given in Section 5, may be used. For 
other configurations of (n1, ..., nm) and other α, critical values may be estimated using 
the MATLAB or R code available at http://hdl.handle.net/1959.13/922372. Code to 
calculate the Monte Carlo p-value for a data set is available at the same URL. 
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Appendix: Derivation of TMR 
 

First, C is augmented by the row vector (0, … , 0, 1) to form the m × m matrix  
 

C* = 







10...0

C
. 

 
The inverse C*–1 is readily shown to satisfy (C*–1)ij = 1 for j > i and 0 otherwise. To 
see this define θ* = (θT, *

mθ )T = C*φ so that θ1 = φ1 –φ2, … , θm–1 = φm–1 – φm, *
mθ  = 

φm, whence φm = *
mθ , φm–1 = θm–1 + φm = θm–1 + *

mθ , φm–2 = θm–2 + θm–1 + *
mθ , …. , φ1 = 

θ1 + θ2 + … + *
mθ . Thus φ = C*–1 θ* with C*–1 as stated. 

To calculate TMR = ( )θθθ ˆ ˆvôcˆ 1−T  ( )θ̂vôc  is first required. Now as above 
( )φ̂vôc  = D so that ( )θ̂vôc  = CDCT. Similarly ( )*ˆvôc θ  = C*DC*T, so that ( )*ˆvôc 1 θ−  

= C*T–1D–1C*–1 is known. We require ( )θ̂vôc 1− , the leading (m – 1) × (m – 1) block of 
( )*ˆvôc 1 θ− . This may be found using Lemma 3.1 with A = ( )θ̂vôc  and, recalling that 

λj = 1/dj for all j, (clearly all dj > 0), we have  
 









HG
FE

 = C*T–1D–1C*–1 = 



















+++

++

mλλλλλ

λλλλλ
λλλ

...1211

21211

111









. 

 
Here E is (m – 1) × (m – 1), G = (λ1 , λ1 + λ2 , … , λ1 + λ2 + … + λm–1), F = GT and H 
is the scalar λ1 + λ2 + … + λm. The Wald test statistic is TMR = ( )θθθ ˆ ˆvôcˆ 1−T  = 

θθ ˆ ˆ -1AT  = W1 – W2 in which W1 = θθ ˆˆ ET  and W2 = θθ ˆˆ 1GFHT − . Now 
 

W1 = ( ) ( ) 2
111

2
221

2
11

ˆ......ˆˆ
−−++++++ mm θλλθλλθλ  + 

( ) ( ) ( ) }ˆˆ......ˆˆ...ˆˆˆˆ...ˆˆ{2 122112213221111211 −−−−− +++++++++++ mmmmm θθλλθθλλθθλλθθλθθλ

 = 2
1221

2
1

2
11 }ˆˆ2...ˆˆ2ˆ...ˆ{ −−− +++++ mmm θθθθθθλ   

+ 2
1232

2
1

2
22 }ˆˆ2...ˆˆ2ˆ...ˆ{ −−− +++++ mmm θθθθθθλ  + … + 2

11
ˆ

−− mm θλ   
= 2

1211 )ˆ...ˆˆ( −+++ mθθθλ  + 2
1322 )ˆ...ˆˆ( −+++ mθθθλ  + … + 2

11
ˆ

−− mm θλ  
 
and 
 



 12 

θ̂G  = ( ) ( ) 11122111
ˆ......ˆˆ

−−++++++ mm θλλθλλθλ  = 

( ) ( ) 111221211
ˆ...ˆ...ˆˆ...ˆˆ

−−−− ++++++++ mmmm θλθθλθθθλ . 
 
Thus, writing λ. = λ1 + λ2 + … + λm, we have 
 

λ. TMR = λ. { ( )21211
ˆ...ˆˆ

−+++ mθθθλ  + ( )21322
ˆ...ˆˆ

−+++ mθθθλ  + … + 2
11

ˆ
−− mm θλ } – 

( ) ( ){ }2

111221211
ˆ...ˆ...ˆˆ...ˆˆ

−−−− ++++++++ mmmm θλθθλθθθλ  = 

= ( ) ( )212111
ˆ...ˆˆ . −+++− mθθθλλλ  + ( ) ( )21222

ˆ...ˆ . −++− mθθλλλ  + … + 

( ) 2
111

ˆ. −−− − mmm θλλλ  – ( )( )13212111
ˆ...ˆˆ ˆ...ˆˆ2 −− ++++++ mm θθθθθθλλ  – … – 

1212
ˆˆ2 −−−− mmmm θθλλ  

= ( ) ( )212121
ˆ...ˆˆ ... −+++++ mm θθθλλλ  + ( ) ( )212312

ˆ...ˆ ... −+++++ mm θθλλλλ  + … + 

( ) 2
1211

ˆ... −−− +++ mmmm θλλλλ  – ( )( )13212121
ˆ...ˆˆ ˆ...ˆˆ2 −− ++++++ mm θθθθθθλλ  – …  

– 1221
ˆˆ2 −−−− mmmm θθλλ  = 

= ( ) ( ){ }2

13212121
ˆ...ˆˆˆ...ˆˆ

−− +++−+++ mm θθθθθθλλ  + … + ( ){ }2

11212
ˆˆˆ −−−−− −+ mmmmm θθθλλ  

+ ( ) ( ){ }2

14312131
ˆ...ˆˆˆ...ˆˆ −− +++−+++ mm θθθθθθλλ  + … + 

( ){ }2

112313
ˆˆˆˆ −−−−−− −++ mmmmmm θθθθλλ  + … + ( )21211 ...ˆˆ

−+++ mm θθθλλ  + … + 

( )21322
ˆ...ˆˆ

−+++ mm θθθλλ  + … + 2
11

ˆ
−− mmm θλλ  =  

= ( )∑
=

<

−
m

ji
ji

jiji

1,

2ˆˆ φφλλ . 

 

In particular for m = 1 TMR = ( ) ( )21

2

2121 /ˆˆ λλφφλλ +− , which agrees with (1.1) after 
substituting for the λj. Similarly for m = 2 
 

TMR = ( ) ( ) ( ){ } ( )321

2

1313

2

3232

2

2121 /ˆˆˆˆˆˆ λλλφφλλφφλλφφλλ ++−+−+− . 
 

Routinely substituting for λ1, … , λm and λ. gives (2.1). 
 


